

RBVRR WOMEN'S COLLEGE OF PHARMACY # 3-4-343, Barkathpura, Hyderabad - 500 027 (T.S), India Office: +91 40-27563065, Mobile: +91 9848930555 (Approved by PCI & Affiliated to Osmania University) Recognized under Section 2(f) of the UGC Act 1956 EAMCET Code: RBVW PGECET Code: RBVW1 www.rbvrrwcp.org | Email: rbvrrwcoph@rediffmail.com & rbvrrwcp2006@gmail.com

Environmental and Energy Utilization Policy

1. Introduction: RBVRR Women's College of Pharmacy (RBVRRWCP) acknowledges the crucial significance of environmental sustainability and responsible energy utilization in today's context. As an accountable educational institution, RBVRRWCP pledges to foster a culture of environmental stewardship within its premises and beyond. This policy delineates RBVRRWCP's approach towards environmental and energy management, outlining its initiatives, strategies, and commitments in this sphere.

Background: Per its core values and societal obligations, RBVRR Women's College of Pharmacy (RBVRRWCP) is committed to promoting gender equality, addressing climate change, and advocating environmental sustainability. RBVRRWCP implements various eco-friendly practices, encompassing energy conservation, rainwater harvesting, waste recycling, and carbon neutrality initiatives. The institution also emphasizes inclusivity for differently-abled individuals and upholds human values and professional ethics in all endeavors.

Global Context: Given the prevailing global challenges such as climate change and environmental deterioration, institutions worldwide are increasingly emphasizing sustainability and energy efficiency. From embracing renewable energy solutions to adopting green practices in daily operations, organizations acknowledge the imperative to minimize their environmental footprint and contribute to a sustainable future, RBVRRWCP aligns itself with global trends and best practices in environmental stewardship and energy management.

2. Objectives: The primary goals of this policy are:

• To reduce RBVRRWCP's environmental impact by curbing resource consumption and waste generation.

• To advocate energy efficiency and the utilization of renewable energy sources to mitigate greenhouse gas emissions.

• To enhance awareness among students, faculty, and staff regarding environmental conservation and sustainable energy practices.

• To ensure compliance with pertinent environmental laws, regulations, and standards.

3. Key Principles: In pursuit of these objectives, RBVRRWCP adheres to the following key principles:

• **Conservation:** Endeavoring to conserve natural resources like water, energy, and materials through efficient usage practices, and endorsing recycling and reuse initiatives.

• Energy Efficiency: Prioritizing energy-efficient technologies and practices to minimize energy consumption and resultant greenhouse gas emissions.

• **Renewable Energy:** Exploring avenues to integrate renewable energy sources such as solar and wind power to diminish reliance on fossil fuels and promote clean energy generation.

J. S-kantu

PRINCIPAL RBVRR Women's College of Pharmacy (CC No: 1706) Barkatpura, Hyderabad-500 027 (TS)

• Waste Reduction: Implementing waste reduction strategies, encompassing waste segregation, recycling programs, and proper disposal practices to minimize solid waste generation and foster a circular economy.

• Environmental Education: Infusing environmental education and sustainability principles into the curriculum and extracurricular activities to nurture a culture of environmental stewardship among stakeholders.

• Continuous Improvement: Regularly evaluating its environmental and energy performance to identify improvement opportunities and implement measures to attain sustainability objectives.

4. Responsibilities:

• Management: Tasked with setting environmental and energy utilization goals, allocating resources for sustainability initiatives, and ensuring compliance with relevant laws and regulations.

• Faculty and Staff: Obliged to implement and adhere to RBVRRWCP's environmental and energy utilization policies and procedures, including practicing resource conservation and promoting sustainability awareness.

• Students: Encouraged to actively engage in environmental conservation endeavors and embrace sustainable practices both on and off-campus.

5. Implementation: The implementation of this policy falls under the purview of the Environmental and Energy Management Committee, responsible for:

• Formulating and executing action plans to achieve environmental and energy utilization goals.

Monitoring and assessing RBVRRWCP's environmental and energy performance.

• Offering guidance and assistance to departments and individuals to foster sustainable practices.

 Conducting regular training and awareness programs on environmental conservation and energy efficiency.

6. Review and Revision: This policy undergoes periodic review to ensure its efficacy and relevance in attaining RBVRRWCP's sustainability objectives. Any necessary revisions or updates are carried out in consultation with relevant stakeholders and approved by the management.

7. Conclusion: Through the adoption of this Environmental and Energy Utilization Policy, RBVRRWCP reaffirms its dedication to environmental sustainability and responsible energy utilization. Through collaborative efforts, a greener and more sustainable future can be realized for both the campus and the community.

. S-kantu

PRINCIPAL RBVRR Women's College of Pharmacy (CC No: 1706) Barkatpura, Hyderabad-500 027 (TS)

RBVRR WOMEN'S COLLEGE OF PHARMACY # 3-4-343, Barkathpura, Hyderabad - 500 027 (T.S), India Office: +91 40-27563065, Mobile: +91 9848930555 (Approved by PCI & Affiliated to Osmania University) Recognized under Section 2(f) of the UGC Act 1956 EAMCET Code: RBVW PGECET Code: RBVW1 www.rbvrrwcp.org | Email: rbvrrwcoph@rediffmail.com & rbvrrwcp2006@gmail.com

Supplementary Details:

- **Quality Audits and Initiatives**: RBVRRWCP will conduct routine quality audits on environment and energy to ensure adherence to established standards and identify areas for enhancement. These audits include:
- **Green Audit/Environment Audit:** RBVRRWCP will assess environmental performance and compliance with environmental regulations.
- **Energy Audit:** The institution will evaluate energy consumption patterns and identify opportunities for energy efficiency enhancements.
- **Clean and Green Campus Initiatives:** The institution will implement measures to enhance the environmental sustainability of campus operations.
- Beyond the Campus Environmental Promotion and Sustainability Activities: RBVRRWCP will engage in outreach programs and community initiatives to promote environmental awareness and sustainability beyond campus boundaries.
- **Certificates and External Audit Reports:** RBVRRWCP will maintain certificates from external audit agencies, including reports on initiatives such as Swachh Bharat and Earth Day celebrations, as part of its commitment to transparency and accountability in environmental management.

Conclusion: RBVRRWCP remains steadfast in its commitment to environmental stewardship and energy conservation. By adhering to global best practices, conducting regular audits, and engaging in sustainability initiatives both on and off-campus, RBVRRWCP endeavors to be a trailblazer in promoting environmental sustainability and social responsibility, contributing to a greener, more sustainable future for generations to come.

7. S-Kantu

PRINCIPAL RBVRR Women's College of Pharmacy (CC No: 1706) Barkatpura, Hydersbad-500 027 (TS)

Environmental Audit 2022-23

Environmental Audit

KIWIS ECO LABORATORIES PVT LTD

Page 9

Water Conservation, Harvesting and Management

Water is an important natural resource and is available naturally depending on the climate and topographic features. All organisms are dependent on water for their living. Although water is available in nature, portable water is not available freely for human consumption. There have been many practices to conserve water so that it can be readily available for human use. It has been noticed that due to unsustainable use of water resources there is contamination and depletion of the ground water and also water which is available in various reservoirs like lakes, ponds, streams etc which is becoming more alarming. Therefore it becomes increasingly important to conserve protect and manage the water resources availability and usage so that it is sustainably used within the college campus. Water auditing is conducted to evaluate the quality, availability and usage of water; the facilities available and methods adopted to revitalize and use it so that the resources are intact without leading to deterioration.

Per capita water availability of many river basins in India is declining over the years due to sustained population pressure, agriculture and industrial expansion, besides changing climate scenarios.

Rainwater harvest

Rainwater harvesting is a technique used for collecting, storing and using rainwater for domestic, agricultural or any other uses. The rainwater is collected from various hard surfaces such as rooftops, runoff from catchments, from streams and water conservation through watershed management or other manmade aboveground hard surfaces. It is an age-old system of collection of rainwater for future use. The harvested water can be stored on surface through ponds and tanks or can be recharged to groundwater.

Protection of Water from Pollution

If the total fresh water available on the earth remains pollution free, it is sufficient to meet the drinking water needs of the existing population of the world, unfortunately a large portion of fresh water does not remain fit for use of the living world due to increasing economic activities, urbanization etc.

• Rational Use of Groundwater:

Groundwater meets 25 per cent of total supply of water in the world, remaining 75 per cent supply is met by surface water sources of rivers, lakes etc. Demand for groundwater goes on increasing in proportion to its available quantity due to which quantity of groundwater goes on decreasing. After exploitation of groundwater, its re-infiltration takes a very long time to complete. Hence, Groundwater exploitation should be only in proportion to its recharging capacity.

Increasing Forest Cover:

According to hydrological movements, water is received through rainfall every year different quantities on the surface of the earth. This water flows on the surface and reaches the seas. Some part of rainwater is stored in stable water reservoirs (lakes and tanks), whereas some quantity of water infiltrates into the land and takes the form of groundwater.

WATER USES AND MANAGEMENT

A total of 20000 L of water is pumped every day for the College dwellers as well to meet the daily demands of the academic and administrative Departments (Table). The daily use of the water during 2022-23 was approx. 22450 L per day shown in Figure 2&3.

Figure. 2: Daily water Consumption and usage in RBVRRR

Table:1 Source and uses of water in the college campus Source of water
0 1

	Source and uses of water in the College campus Source of water					
SI. No	Parameters	Information				
1	No of Wells	1				
2	No of the motors used	2				
3	Horsepower-motor	3 HP x 2				
4	Depth of well- Total	600 m x 1				
5	Capacity of Tank(Total)	250000 L				
Quantity	y of water used in different section	ns of the Campus				
	Sections	Water use (L/day)				
6	Administrative block	400				
7	Canteen	6000				
8	Urinals and Toilets	4000				
9	Departments	800				
10	Gardens	1200				
11	Laboratories	1500				
12	Drinking	8000				
13	Leakage	500				
14	Main purposes of water use in the campus	Drinking and cooking purpose Toilets and wash areas Laboratory use Gardening Construction				
15	Nos. of water tap	320 nos				
16	Water cooler and drinking water filtration facility	5 nos				
17	Nos. of urinal and toilets	20				
18	Nos. of waterless /bio-toilets	Nil				
19	Any water wastage/why?	Yes, leakage from pipes and tanks, leaving of taps open at times				
20	Water usage for gardening	1200 Ltr				
21	Wastewater sources	leakage from pipes and tanks, Overflowing of tanks from residential qtrs., Toilets, laboratories, hostels				
22	Use of wastewater	Nil				
23	The fate of wastewater from	Discharged into soak pit in case of				
	labs	contamination and natural discharge				
24	Any wastewater treatment for lab water	No				
25	Whether any green chemistry	No				

KIWIS ECO LABORATORIES PVT LTD

Page | 12

RBVRR Women's College of Pharmacy			Environmental Audit 2022-23
		method practiced in Labs	
	26	Rainwater harvesting	Rain water harvesting is maintain by the water body within the premises which also helps in maintaining the ground water level and there is no reusable rain water which

The stake holders of the BVRRR specially propose to use of grey water which is obtained from the various domestic activities and they re-use the same water for gardening and vegetable fields etc. Also water recycling is done as per the direction of the competent authority in broader scale as and when required. During the rainy season water from the roof tops of the buildings directly fall into the lake through rain water outlets, RCC drains and recharges the ground water table throughout the year

Figure.3 Drinking water in Each Floor

Present Status: Constructed Water harvesting Pits 2 No's across the campus and in the process of constructing water drains and interconnecting the same to water harvesting pits to recharge the ground water.

THE WATER QUALITY IN INSTITUTE

One Bore water and one RO water samples were collected in the In the campus. The results are discussed below and given in Table.2 **Observation of Ground Water:**

- pH analysis results indicate the pH range 7.0-7.6 Observed with in the acceptable limit of 6.5 to 8.5.
- Total Dissolved Solids in the range of 15-655 mg/L. Observed that all values are in the study area are with in the acceptable limits.
- Calcium is in the range 3-75 mg/L. Observed that all the values are within the acceptable limits.
- Magnesium is in the range is 1.5-38 mg/L. Observed that all the values are within the acceptable limits.
- Chloride concentration in the range is 2.5-169 mg/L Obeserved that all values are in the study area are within the acceptable limits.
- Iron Concentrations below the <0.3 mg/L. Obeserved that all values are in the study area are with in the acceptable limits.

Type of Sample Parameters		Resu	lts	IS 10500 (Acceptable Limits)	IS 10500 (Permissible Limits)	
		Tap RO water atTap water atGround waterGround Floor				
TDS	(ppm)	15	655	500	2000	
pH Range		7.0	7.6	6.5-8.5	No relaxation	
Turbidity	(NTU)	<1.0	<1.0	1	5	
Iron	(ppm)	<0.3	<0.3	0.3	No relaxation	
Calcium	(ppm)	3	75	75	200	
Magnesium	(ppm)	1.5	38	30	100	
Chlorides Cl-	(ppm)	2.5	169	250	1000	

Table: 2: Status of water quality in the Hostels

Water quality results indicate parameters are within the permissible limit, prescribed by IS: 10500 respectively. The results revealed that all the samples have satisfactory Physicochemical characteristics. The Campus was well maintaining the reduce water wastage practices shows in Fig 3.

Waste Management:

The campus produces and disposes solid waste through its day-to-day operations. There can be difference between individuals, between certain day's activities, and between holidays and work days, as well as between seasons. An average figure per person per day is however worked out by observing their activities for a week by student volunteers at the disposal area through sample survey approach, quantifying the measured wastes and then averaging.

In India, through certain research studies on waste generation in academic campuses from time to time, environmentalists have arrived at some empirical coefficients for assessing GHG emissions from solid wastes. These will be use in evaluating the green auditing data on wastes in RBVRR institute. The wastes generated in the college is systematically collected and disposed off as scientifically as possible. Wet wastes are separated at source itself. For disposal, only competent agencies are approached and materials handed over. As seen in the table, most items are intended to be recycled, reused or processed. Adequate numbers of garbage bins are provided in every room and in every floor in every hostel as well as in the academic area and guest house, and the students are using them as and when required. The practice of burning the paper waste, which is the usual practice needs to be discontinued and better options tried. Using waste paper for creating decorative materials is one option. The present waste generation is represented as **Table.3 and Figure. 4-6**

The following waste is categorizes as:

Non Bio Waste – Plastic Bottles / Waste Paper / Cardboards/ Batteries etc
 Non- biodegradable waste, which cannot be decomposed by biological processes is called non- biodegradable waste.

Environmental Audit 2022-23

These are of two types -

- **Recyclable**: waste having economic values but destined for disposal can be recovered and reused along with their energy value. e g. Plastic, paper, old cloth etc.
- Non-recyclable: waste which do not have economic value of recovery. e.g. Carbon paper, thermo coal, tetra packs etc.

Disposal of non-biodegradable waste is a major concern, not just plastic, a variety of waste being accumulated. There are a few ways to help non-biodegradable waste management. The impact of non biodegradable waste on the environment and also focus on its safe disposal for sustainable environment.

S. No.	Stake holders	Types of solid	Average waste	% of waste	
		waste	generated Year (Kg)		
1	ACADEMIC Paper w		350	7.4	
2		Plastic waste	180	3.8	
3		Organic Waste	2600	54.9	
4		E-waste	50	1.1	
5		Bio Medical Waste	Bio Medical 25 Waste		
6	ADMINISTRATIVE OFFICE	Paper waste	120	2.5	
7		Plastic waste	stic waste 30		
8		Organic Waste	ic Waste 85		
9		E-waste	5	0.1	
10	CANTEENS	Paper waste	300	6.3	
11		Plastic waste	385	8.1	
12		Organic Waste	Waste 600		
13		E-waste	2	0.0	
TOTAL			4732 Kg /	Year	

Table 3. Annual Waste Generation category wise

KIWIS/QF/7.8/01

Plot No. 19, ALEAP Industrial Estate, SY. No's 342, Near Pragathi Nagar, Quthbullapur Mandal and Municipality, Ranga Reddy Dist. Telangana - 500 090. Email: kiwislabhyd@gmail.com Ph: 99666 61485 / 040-23816333

TEST REPORT

Page 1 of 2

Report No: KIWIS/W/COM/23/115 Name and address of the client

M/s.RBVRR WOMEN'S COLLEGE OF PHARMACY 3-4-343, Baghlingmpally Cross Rd, Barkatpura, Hyderabad, Telangana 500027

Date of report	: 22-02-2023
Date of sampling	: 13-02-2023
Sample received on	: 14-02-2023
Analysis starting date	: 14-02-2023
Analysis completion date	: 22-02-2023
Sub Contract Testing	:NA

Sample Collected by	: Kiwis Eco Laboratories Private Limited
Sample Collected in	: in Plastic cans
Sampling Procedure	: KIWIS/SOP/ Lab - 258
Sample registration no /C	Code : W/COM/02/23/244
Sample description	: Water Quality Monitoring
Name of the location	: Drinking water

Samples are analyzed "as Received basis"

S.No	Parameter	Unit	Method Resu		IS 10500 (Acceptable Limits)	IS 10500 (Permissible Limits)
1	Color	Hazen	APHA 2120 C	<5.0	5	15
2	Turbidity	NTU	APHA 2130 B	<1.0	1	5
3	рН @ 25.0∘С		APHA 4500H+ B	7.3	6.5-8.5	No relaxation
4	Electrical Conductivity	µMho/Cm	АРНА 2510 - В	26	Not Specified	Not Specified
5	Total Dissolved solids	mg/L	APHA 2540 C	15	500	2000
6	Alkalinity as CaCO ₃	mg/L	APHA 2320 B	8.0	200	600
7	Hardness as CaCO ₃	mg/L	APHA 2340 C	12	200	600
8	Calcium as Ca	mg/L	APHA 3500 Ca B	<5	75	200
9	Magnesium as Mg	mg/L	APHA 3500-Mg B	<2	30	100
10	Chlorides as Cl-	mg/L	APHA 4500 Cl- B	<5	250	1000
11	Sulphates as SO ₄	mg/L	APHA 4500 SO4 D	<5	200	400
12	Nitrate as NO ₃	mg/L	APHA 4500 NO3 B	<1.0	45	No relaxation
13	Sodium as Na	mg/L	APHA 3500 Na B	<1.0	Not Specified	Not Specified

KIWIS/QF/7.8/01

Plot No. 19, ALEAP Industrial Estate, SY. No's 342, Near Pragathi Nagar, Quthbullapur Mandal and Municipality, Ranga Reddy Dist. Telangana - 500 090. Email: kiwislabhyd@gmail.com Ph: 99666 61485 / 040-23816333

TEST REPORT

Report No: KIWIS/W/COM/23/115

Page 2 of 2

Samples are analyzed "as Received basis"						
S.No	Parameter	Unit	Method	Result	IS 10500 (Acceptable Limits)	IS 10500 (Permissible Limits)
14	Potassium as K	mg/L	APHA 3500 K B	<1.0	Not Specified	Not Specified
15	Fluoride as F	mg/L	APHA 4500F D	< 0.5	1.0	1.5
16	Iron as Fe	mg/L	APHA 3500 Fe B	< 0.3	1.0	No relaxation
17	Zinc as Zn	mg/L	APHA 3111 B	<0.2	5	15
18	Cyanide as CN-	mg/L	АРНА 4500 CN- C, E	<0.05	0.05	No relaxation
19	Phenolic Compounds as C ₆ H ₅ OH	mg/L	APHA 5530 D (Direct Photometric Method)	<0.001	0.001	0.002
20	Lead as Pb	mg/L	APHA 3111 B	<0.01	0.01	No relaxation
21	Mercury as Hg	mg/L	APHA-3112 Hg B	<0.001	0.001	0.001
22	Manganese as Mn	mg/L	APHA 3111 B	<0.1	0.1	0.3
23	Cadmium as Cd	mg/L	APHA 3111 B	<0.003	0.003	No relaxation
24	Chromium as Cr ⁺⁶	mg/L	APHA 3500 Cr B	<0.05	0.05	No relaxation
25	Copper as Cu	mg/L	APHA 3111 B	<0.05	0.05	1.5
26	Total Coliform	MPN/ 100ml	APHA 9221B	Absent	Shall not be detectable in any 100 ml sample	Shall not be detectable in any 100 ml sample
27	E-Coli	MPN/ 100ml	APHA 9221G	Absent	Shall not be detectable in any 100 ml sample	Shall not be detectable in any 100 ml sample

Methods follow: APHA 23rdEdition Opinion and interpretation: Nil

• Reports pertained only to the submitted sample

Test reports shall not be reproduced except in full, without written approval of the laboratory

End of the Report

Checked By

(O.Chowdeswararao) Sr.Chemist

.

NA: Not Applicable

Authorized Signatory

(Dr.Nalini Vijayalaxmi) Manager Laboratory

RBVRR Women's College of Pharmacy Environmental Audit 2021-22

ENVIRONMENTAL AUDIT

KIWIS ECO LABORATORIES PVT LTD

Page 9

Water Conservation, Harvesting and Management

Water is an important natural resource and is available naturally depending on the climate and topographic features. All organisms are dependent on water for their living. Although water is available in nature, portable water is not available freely for human consumption. There have been many practices to conserve water so that it can be readily available for human use. It has been noticed that due to unsustainable use of water resources there is contamination and depletion of the ground water and also water which is available in various reservoirs like lakes, ponds, streams etc which is becoming more alarming. Therefore it becomes increasingly important to conserve protect and manage the water resources availability and usage so that it is sustainably used within the college campus. Water auditing is conducted to evaluate the quality, availability and usage of water; the facilities available and methods adopted to revitalize and use it so that the resources are intact without leading to deterioration.

Per capita water availability of many river basins in India is declining over the years due to sustained population pressure, agriculture and industrial expansion, besides changing climate scenarios.

Rainwater harvest

Rainwater harvesting is a technique used for collecting, storing and using rainwater for domestic, agricultural or any other uses. The rainwater is collected from various hard surfaces such as rooftops, runoff from catchments, from streams and water conservation through watershed management or other manmade aboveground hard surfaces. It is an age-old system of collection of rainwater for future use. The harvested water can be stored on surface through ponds and tanks or can be recharged to groundwater.

Protection of Water from Pollution

If the total fresh water available on the earth remains pollution free, it is sufficient to meet the drinking water needs of the existing population of the world, unfortunately a large portion of fresh water does not remain fit for use of the living world due to increasing economic activities, urbanization etc.

• Rational Use of Groundwater:

Groundwater meets 25 per cent of total supply of water in the world, remaining 75 per cent supply is met by surface water sources of rivers, lakes etc. Demand for groundwater goes on increasing in proportion to its available quantity due to which quantity of groundwater goes on decreasing. After exploitation of groundwater, its re-infiltration takes a very long time to complete. Hence, Groundwater exploitation should be only in proportion to its recharging capacity.

Increasing Forest Cover:

According to hydrological movements, water is received through rainfall every year different quantities on the surface of the earth. This water flows on the surface and reaches the seas. Some part of rainwater is stored in stable water reservoirs (lakes and tanks), whereas some quantity of water infiltrates into the land and takes the form of groundwater.

WATER USES AND MANAGEMENT

A total of 18000 L of water is pumped every day for the College dwellers as well to meet the daily demands of the academic and administrative Departments (Table 3). The daily use of the water during 2021-22 was approx. 8600 L per day shown in Figure 6&7.

Figure. 2: Daily water Consumption and usage in RBVRRR

Environmental Audit 2021-22

Table: 1 Source and uses of water in the college campus Source of water

	Source and uses of water in the College campus Source of water				
SI. No	Parameters	Information			
1	No of Wells	1			
2	No of the motors used	2			
3	Horsepower- motor	3 HP x 2			
4	Depth of well- Total	600 m x 1			
5	Capacity of Tank(Total)	250000 L			
Quantit	y of water used in different sectio	ns of the Campus			
	Sections	Water use (L/day)			
6	Administrative block	400			
7	Canteen	2000			
8	Urinals and Toilets	2000			
9	Departments	500			
10	Gardens	1000			
11	Laboratories	1500			
12	Drinking	2000			
13	Leakage	500			
14	Main purposes of water use in	Drinking and cooking purpose Toilets and			
	the campus	wash areas Laboratory use Gardening			
		Construction			
15	Nos. of water tap	320 nos			
16	Water cooler and drinking	5 nos			
	water filtration facility				
17	Nos. of urinal and toilets	20			
18	Nos. of waterless /bio-toilets	Nil			
19	Any water wastage/why?	Yes, leakage from pipes and tanks, leaving of			
		taps open at times			
20	Water usage for gardening	1000 Ltr			
21	Wastewater sources	leakage from pipes and tanks. Overflowing			
1000		of tanks from residential gtrs Toilets.			
		laboratories, hostels			
22	Use of wastewater	Nil			
23	The fate of wastewater from	Discharged into soak pit in case of			
labs		contamination and natural discharge			
24	Any wastewater treatment for	No			
6984. .	lab water				
25	Whether any green chemistry	No			
	method practiced in Labs	12560.95			

KIWIS ECO LABORATORIES PVT LTD

Page | 12

RBVRR Women's College of Pharmacy		Environmental Audit 2021-22		
26	Rainwater harvesting	Rain water harvesting is maintain by the water body within the premises which also helps in maintaining the ground water level and there is no reusable rain water which		

The stake holders of the BVRRR specially propose to use of grey water which is obtained from the various domestic activities and they re-use the same water for gardening and vegetable fields etc. Also water recycling is done as per the direction of the competent authority in broader scale as and when required. During the rainy season water from the roof tops of the buildings directly fall into the lake through rain water outlets, RCC drains and recharges the ground water table throughout the year

Figure.3 Drinking water in Each Floor

Present Status: Constructed Water harvesting Pits 2 No's across the campus and in the process of constructing water drains and interconnecting the same to water harvesting pits to recharge the ground water.

Waste Management:

The campus produces and disposes solid waste through its day-to-day operations. There can be difference between individuals, between certain day's activities, and between holidays and work days, as well as between seasons. An average figure per person per day is however worked out by observing their activities for a week by student volunteers at the disposal area through sample survey approach, quantifying the measured wastes and then averaging.

In India, through certain research studies on waste generation in academic campuses from time to time, environmentalists have arrived at some empirical coefficients for assessing GHG emissions from solid wastes. These will be use in evaluating the green auditing data on wastes in RBVRR institute. The wastes generated in the college is systematically collected and disposed off as scientifically as possible. Wet wastes are separated at source itself. For disposal, only competent agencies are approached and materials handed over. As seen in the table, most items are intended to be recycled, reused or processed. Adequate numbers of garbage bins are provided in every room and in every floor in every hostel as well as in the academic area and guest house, and the students are using them as and when required. The practice of burning the paper waste, which is the usual practice needs to be discontinued and better options tried. Using waste paper for creating decorative materials is one option. The present waste generation is represented as **Table.2 and Figure.4-5**

The following waste is categorizes as:

Non Bio Waste – Plastic Bottles / Waste Paper / Cardboards/ Batteries etc
 Non- biodegradable waste, which cannot be decomposed by biological processes is called non- biodegradable waste.

Environmental Audit 2021-22

These are of two types -

- **Recyclable**: waste having economic values but destined for disposal can be recovered and reused along with their energy value. e.g. Plastic, paper, old cloth etc.
- Non-recyclable: waste which do not have economic value of recovery. e.g. Carbon paper, thermo coal, tetra packs etc.

Disposal of non-biodegradable waste is a major concern, not just plastic, a variety of waste being accumulated. There are a few ways to help non-biodegradable waste management. The impact of non biodegradable waste on the environment and also focus on its safe disposal for sustainable environment.

S. No.	Stake holders	Types of solid waste	Average waste generated Year (Kg)	% of waste
1	ACADEMIC DEPARTMENT	Paper waste	150	8.3
2		Plastic waste	100	5.5
3		Organic Waste	1000	55.3
4		E-waste	10	0.6
5		Bio Medical Waste 20		1.1
6	ADMINISTRATIVE OFFICE	Paper waste	50	2.8
7		Plastic waste	20	1.1
8		Organic Waste	30	1.7
9		E-waste	2	0.1
10	CANTEENS	Paper waste	100	5.5
11		Plastic waste	25	1.4
12		Organic Waste	e 300 1	
13		E-waste	2	0.1
TOTAL			1809 Kg /	rear

Table2. Annual Waste Generation category wise

Environmental Audit 2021-22

Figure.4 Annual Waste Generation In the RBVRR College of Pharmacy

Bio Medical waste:

Bio medical waste means any waste, which is generated during the diagnosis, treatment or immunization of human beings or animals or in research activities pertaining thereto or in the production or testing of biologicals, and including categories mentioned in Schedule I Category of Waste as **Table 3**

Carbon Footprint

Carbon Footprint is the amount of carbon dioxide released into the atmosphere as a result of the activities of a particular individual, optimization, or community. An acceptable definition for carbon foot print is: carbon footprints the total amount of greenhouse gases produced directly and indirectly for supporting human activities, usually expressed in equivalent tons of carbon dioxide (CO₂). The most common greenhouse gases (GHGs) in our environment are carbon dioxide, water vapour, methane nitrous oxide and ozone. The total carbon footprint college as calculated and represented as **Table.4** and International Standards of carbon footprint for various parameters represented as **Table.5**

SI. No:	Source	Rate	Quantity x	Days/year	Total Quantity	Annual Eqvt. CO2
1	Electricity use (For India)	0.82 kg/kWh	-		40686KWh	33.3 T CO2
2	Fossil fuel use	268 g CO2eq/kg	LPG	10	435kg/Year	0.116 T CO ₂
3	Bus – students public transport	268 g CO2eq/L	520	160	3350 kg/year	897.8 T CO ₂
4	Staff week public transport	268 g CO2eq/L	25	250	187.5 kg/Year	50.3 T CO2
5	Non Teaching staff public transport	268 g CO2eq/L	45	200	337.5 kg/Year	90.5 T CO ₂
6	Cars, Taxis all	230g CO2eq/L	2	150	30 kg/Year	8.0 T CO2
						1080.0T CO2

The RBVRR has total staff (Teaching + Non Teaching) of 70 members, the Co2 emission **Table:3 Carbon foot Print**

The per capita carbon footprint for the RBVRR, is 1080 kg (or 0.108 T) of CO₂ equivalent 1080 T/1000 persons].

According to Economic Survey, Govt. of India 2009 - 10, the per capita emission for an Indian was 1.2 ton CO_2 eq. per annum. In the same report, it was projected that this will go up to 2.0 – 2.5 T of CO₂ by 2021-22 and to 3.0 – 3.5 T of CO₂ by 2030. For the year 2021-22, the RBVRR, the Carbon Footprint per capita at 0.108 T CO₂ is even less than one-Fourth of the national average. The campus is thus **a Green Campus**.

Environmental Audit 2021-22

Carbon Footprint Balance

The remediation gap between the assessed footprint and available remediation is 1080.0– 0.6 =1079.4 T CO₂eq for 2021-22. On closer examination, major contributors to it are:- Daily bus journey by around 600 day scholars (897.8 T Co₂).

	Pounds CO ₂	Kilograms CO2	Pounds CO2	Kilogram: CO2
Carbon Dioxide (CO2) Factors:	Per Unit of Volume or Mass	Volume or Mass	Btu	Million B
For homes and businesses	5			
Propane	12.70/gallon	5.76/gallon	139.05	63.07
Butane	14.80/gallon	6.71/gallon	143.20	64.95
Butane/Propane Mix	13.70/gallon	6.21/gallon	141.12	64.01
Home Heating and Diesel Fuel (Distillate)	22.40/gallon	10.16/gallon	161.30	73.16
	Pounds CO2	Kilograms CO2	Pounds CO2	Kilograms CO2
arbon Dioxide (CO2) actors:	Per Unit of Volume or Mass	Volume or Mass	Million Btu	Million Btu
erosene	21.50/gallon	9.75/gallon	159.40	72.30
oal (All types)	4,631.50/short ton	2,100.82/short ton	210.20	95.35
latural Gas	117.10/thousand cubic	53.12/thousand	117.00	53.07
	feet	feet		
asoline	feet 19.60/gallon	feet 8.89/gallon	157.20	71.30
asoline esidual Heating Fuel Businesses only)	feet 19.60/gallon 26.00/gallon	feet 8.89/gallon 11.79/gallon	157.20 173.70	71.30 78.79
asoline esidual Heating Fuel Businesses only) Other transportation fuels	feet 19.60/gallon 26.00/gallon	feet 8.89/gallon 11.79/gallon	157.20 173.70	71.30 78.79
asoline esidual Heating Fuel Businesses only) P ther transportation fuels et Fuel	feet 19.60/gallon 26.00/gallon 21.10/gallon	feet 8.89/gallon 11.79/gallon 9.57/gallon	157.20 173.70 156.30	71.30 78.79 70.90

Water Conservation, Harvesting and Management

Water is an important natural resource and is available naturally depending on the climate and topographic features. All organisms are dependent on water for their living. Although water is available in nature, portable water is not available freely for human consumption. There have been many practices to conserve water so that it can be readily available for human use. It has been noticed that due to unsustainable use of water resources there is contamination and depletion of the ground water and also water which is available in various reservoirs like lakes, ponds, streams etc which is becoming more alarming. Therefore it becomes increasingly important to conserve protect and manage the water resources availability and usage so that it is sustainably used within the college campus. Water auditing is conducted to evaluate the quality, availability and usage of water; the facilities available and methods adopted to revitalize and use it so that the resources are intact without leading to deterioration.

Per capita water availability of many river basins in India is declining over the years due to sustained population pressure, agriculture and industrial expansion, besides changing climate scenarios.

Rainwater harvest

Rainwater harvesting is a technique used for collecting, storing and using rainwater for domestic, agricultural or any other uses. The rainwater is collected from various hard surfaces such as rooftops, runoff from catchments, from streams and water conservation through watershed management or other manmade aboveground hard surfaces. It is an age-old system of collection of rainwater for future use. The harvested water can be stored on surface through ponds and tanks or can be recharged to groundwater.

Protection of Water from Pollution

If the total fresh water available on the earth remains pollution free, it is sufficient to meet the drinking water needs of the existing population of the world, unfortunately a large portion of fresh water does not remain fit for use of the living world due to increasing

economic activities, urbanization etc.

• Rational Use of Groundwater:

Groundwater meets 25 per cent of total supply of water in the world, remaining 75 per cent supply is met by surface water sources of rivers, lakes etc. Demand for groundwater goes on increasing in proportion to its available quantity due to which quantity of groundwater goes on decreasing. After exploitation of groundwater, its re-infiltration takes a very long time to complete. Hence, Groundwater exploitation should be only in proportion to its recharging capacity.

Increasing Forest Cover:

According to hydrological movements, water is received through rainfall every year different quantities on the surface of the earth. This water flows on the surface and reaches the seas. Some part of rainwater is stored in stable water reservoirs (lakes and tanks), whereas some quantity of water infiltrates into the land and takes the form of groundwater.

WATER USES AND MANAGEMENT

A total of 18000 L of water is pumped every day for the College dwellers as well to meet the daily demands of the academic and administrative Departments (Table 1). The daily use of the water during 2020-21 was approx. 2110 L per day shown in Figure 2&3.

Environmental Audit 2020-21

Figure.2: Daily water Consumption and usage in RBVRRR

Table: 1 Source and uses of water in the college campus Source of water

Source and uses of water in the College campus Source of water				
SI. No	Parameters	Information		
1	No of Wells	1		
2	No of the motors used	2		
3	Horsepower- motor	3 HP x 2		
4	Depth of well- Total	600 m x 1		
5	Capacity of Tank(Total)	250000 L		
Quantit	y of water used in different section	ns of the Campus		
	Sections	Water use (L/day)		
6	Administrative block	100		
7	Canteen	100		
8	Urinals and Toilets	100		
9	Departments	10		
10	Gardens	1000		
11	Laboratories	100		
12	Drinking	500		
13	Leakage	500		
14	Main purposes of water use in	Drinking and cooking purpose Toilets and		
	the campus	wash areas Laboratory use Gardening		
		Construction		
15	Nos. of water tap	320 nos		
16	Water cooler and drinking	5 nos		
	water filtration facility			
17	Nos. of urinal and toilets	20		
18	Nos of waterless /bio-toilets	Nil		
10	Any water wastage/why?	Ves leakage from nines and tanks leaving of		
19	Any water wastage/why.	tans onen at times		
20	Water usage for gardening	1000 ltr		
20	water usage for gardening			
21	Wastewater sources	leakage from pipes and tanks, Overflowing		
		of tanks from residential qtrs., Toilets,		
		laboratories, hostels		
22	Use of wastewater	Nil		
23	The fate of wastewater from	Discharged into soak pit in case of		
	labs	contamination and natural discharge		
24	Any wastewater treatment for	No		
	lab water			
25	Whether any green chemistry	No		
	method practiced in Labs			

Environmental Audit 2020-21

26	Rainwater harvesting

Rain water harvesting is maintain by the water body within the premises which also helps in maintaining the ground water level and there is no reusable rain water which

The stake holders of the BVRRR specially propose to use of grey water which is obtained from the various domestic activities and they re-use the same water for gardening and vegetable fields etc. Also water recycling is done as per the direction of the competent authority in broader scale as and when required. During the rainy season water from the roof tops of the buildings directly fall into the lake through rain water outlets, RCC drains and recharges the ground water table throughout the year

Figure.3 Drinking water in Each Floor

Present Status: Constructed Water harvesting Pits 2 No's across the campus and in the process of constructing water drains and interconnecting the same to water harvesting pits to recharge the ground water.

Waste Management:

The campus produces and disposes solid waste through its day-to-day operations. There can be difference between individuals, between certain day's activities, and between holidays and work days, as well as between seasons. An average figure per person per day is however worked out by observing their activities for a week by student volunteers at the disposal area through sample survey approach, quantifying the measured wastes and then averaging.

In India, through certain research studies on waste generation in academic campuses from time to time, environmentalists have arrived at some empirical coefficients for assessing GHG emissions from solid wastes. These will be use in evaluating the green auditing data on wastes in RBVRR institute. The wastes generated in the college is systematically collected and disposed off as scientifically as possible. Wet wastes are separated at source itself. For disposal, only competent agencies are approached and materials handed over. As seen in the table, most items are intended to be recycled, reused or processed. Adequate numbers of garbage bins are provided in every room and in every floor in every hostel as well as in the academic area and guest house, and the students are using them as and when required. The practice of burning the paper waste, which is the usual practice needs to be discontinued and better options tried. Using waste paper for creating decorative materials is one option. The present waste generation is represented as **Table.2 and Figure.4-5**

The following waste is categorizes as:

Non Bio Waste – Plastic Bottles / Waste Paper / Cardboards/ Batteries etc
 Non- biodegradable waste, which cannot be decomposed by biological processes is called non- biodegradable waste.

These are of two types –

- **Recyclable**: waste having economic values but destined for disposal can be recovered and reused along with their energy value. e.g. Plastic, paper, old cloth etc.
- Non-recyclable: waste which do not have economic value of recovery. e.g. Carbon paper, thermo coal, tetra packs etc.

Environmental Audit 2020-21

Disposal of non-biodegradable waste is a major concern, not just plastic, a variety of waste being accumulated. There are a few ways to help non-biodegradable waste management. The impact of non biodegradable waste on the environment and also focus on its safe disposal for sustainable environment.

S. No.	Stake holders	Types of solid	Average waste	% of waste
		waste	generated Year (Kg)	
1	ACADEMIC DEPARTMENT	Paper waste	100	16.8
2		Plastic waste	. 10	1.7
3		Organic Waste	100	16.8
4		E-waste	1	0.2
5		Bio Medical Waste	20	3.4
6	ADMINISTRATIVE OFFICE	Paper waste	100	16.8
7		Plastic waste	10	1.7
8		Organic Waste	30	5.0
9		E-waste	2	0.3
10	CANTEENS	Paper waste	10	1.7
11		Plastic waste	10	1.7
12		Organic Waste	200	33.6
13		E-waste	2	0.3
TOTAL		595 Kg /Y	'ear	

Table 2. Annual Waste Generation catego	ory wise
---	----------

Environmental Audit 2020-21

Figure.4 Annual Waste Generation In the RBVRR College of Pharmacy

Bio Medical waste:

Bio medical waste means any waste, which is generated during the diagnosis, treatment or immunization of human beings or animals or in research activities pertaining thereto or in the production or testing of biologicals, and including categories mentioned in Schedule I Category of Waste as **Table 3**

Carbon Footprint

Carbon Footprint is the amount of carbon dioxide released into the atmosphere as a result of the activities of a particular individual, optimization, or community. An acceptable definition for carbon foot print is: carbon footprints the total amount of greenhouse gases produced directly and indirectly for supporting human activities, usually expressed in equivalent tons of carbon dioxide (CO₂). The most common greenhouse gases (GHGs) in our environment are carbon dioxide, water vapour, methane nitrous oxide and ozone. The total carbon footprint college as calculated and represented as **Table.4** and International Standards of carbon footprint for various parameters represented as **Table.5**

The RBVRR has total staff (Teaching + Non Teaching) of 70 members, the Co2 emission **Table:4 Carbon foot Print**

SI. No:	Source	Rate	Quantity x Days/year		Total Quantity	Annual Eqvt. CO₂	
1	Electricity use (For India)	0.82 kg/kWh	-		3136KWh	2.6 T CO ₂	
2	Fossil fuel use	268 g CO2eq/kg	LPG	5	435kg/Year	0.05 T CO2	
3	Bus – students public transport	268 g CO2eq/L	100	100	250 kg/year	67 T CO ₂	
4	Staff week public transport	268 g CO2eq/L	25	150	56.2 kg/Year	15 T CO ₂	
5	Non Teaching staff public transport	268 g CO2eq/L	45	150	168 kg/Year	45 T CO2	
6	Cars, Taxis all	230g CO2eq/L	2	100	5 kg/Year	0.6 CO2	
						130.2T CO2	

The per capita carbon footprint for the RBVRR, is 130 kg (or 0.013 T) of CO_2 equivalent 130.2 T /1000 persons].

According to Economic Survey, Govt. of India 2009 - 10, the per capita emission for an Indian was 1.2 ton CO_2 eq. per annum. In the same report, it was projected that this will go up to 2.0 – 2.5 T of CO₂ by 2020-21 and to 3.0 – 3.5 T of CO_2 by 2030. For the year 2020-21, the RBVRR, the Carbon Footprint per capita at 0.013 T CO_2 is even less than one-Fourth of the national average. The campus is thus **a Green Campus**.

Carbon Footprint Balance

The remediation gap between the assessed footprint and available remediation is 130.2-3.5 = 126.7 T CO₂eq for 2020-21. On closer examination, major contributors to it are:- Daily bus journey by around 600 day scholars (due to covid-19 more no of students attend the classes are online).

Table: 5 International standard values of Carbon foot Print for various parameters

•	Pounds CO2 Per Unit of Volume	Kilograms CO2	Pounds CO2 Million	Kilograms CO2
Carbon Dioxide (CO2) Factors:	or Mass	Volume or Mass	Btu	Million Btu
For homes and businesse	s			
Propane	12.70/gallon	5.76/gallon	139.05	63.07
Butane	14.80/gallon	6.71/gallon	143.20	64.95
Butane/Propane Mix	13.70/gallon	6.21/gallon	141.12	64.01
Home Heating and Diesel Fuel (Distillate)	22.40/gallon	10.16/gallon	161.30	73.16
	Pounds CO2	Kilograms CO2	Pounds CO2	Kilograms CO2
Carbon Dioxide (CO2) Factors:	Per Unit of Volume or Mass	Volume or Mass	Million Btu	Million Btu
Kerosene	21.50/gallon	9.75/gallon	159.40	72.30
Coal (All types)	4,631.50/short ton	2,100.82/short to	1 210.20	95.35
Natural Gas	117.10/thousand cubic feet	53.12/thousand cubic feet	117.00	53.07
Gasoline	19.60/gallon	8.89/gallon	157.20	71.30
Residual Heating Fuel (Businesses only)	26.00/gallon	11.79/gallon	173.70	78.79
Other transportation fuels				

RBVRR Women's College of Pha	Envi	vironmental Audit 2020-21		
Jet Fuel	21.10/gallon	9.57/gallon	156.30	70.90
Aviation Gas	18.40/gallon	8.35/gallon	152.60	69.20
Industrial fuels and others	not listed above			
Flared natural gas	120.70/thousand cubi feet	c 54.75/thousand cubic feet	120.60	54.70
Petroleum coke	32.40/gallon	14.70/gallon	225.10	102.10
Other petroleum & miscellaneous	22.09/gallon	10.02/gallon	160.10	72.62
Nonfuel uses				
Asphalt and Road Oil	26.34/gallon	11.95/gallon	166.70	75.61
Lubricants	23.62/gallon	10.72/gallon	163.60	74.21
Petrochemical Feedstocks	24.74/gallon	11.22/gallon	156.60	71.03

KIWIS ECO LABORATORIES PVT LTD

Page 21

Energy Audit 2019-20

ENVIRONMENTAL AUDIT

KIWIS ECO LABORATORIES PVT LTD

Page 9

Water Conservation, Harvesting and Management

Water is an important natural resource and is available naturally depending on the climate and topographic features. All organisms are dependent on water for their living. Although water is available in nature, portable water is not available freely for human consumption. There have been many practices to conserve water so that it can be readily available for human use. It has been noticed that due to unsustainable use of water resources there is contamination and depletion of the ground water and also water which is available in various reservoirs like lakes, ponds, streams etc which is becoming more alarming. Therefore it becomes increasingly important to conserve protect and manage the water resources availability and usage so that it is sustainably used within the college campus. Water auditing is conducted to evaluate the quality, availability and usage of water; the facilities available and methods adopted to revitalize and use it so that the resources are intact without leading to deterioration.

Per capita water availability of many river basins in India is declining over the years due to sustained population pressure, agriculture and industrial expansion, besides changing climate scenarios.

Rainwater harvest

Rainwater harvesting is a technique used for collecting, storing and using rainwater for domestic, agricultural or any other uses. The rainwater is collected from various hard surfaces such as rooftops, runoff from catchments, from streams and water conservation through watershed management or other manmade aboveground hard surfaces. It is an age-old system of collection of rainwater for future use. The harvested water can be stored on surface through ponds and tanks or can be recharged to groundwater.

Protection of Water from Pollution

If the total fresh water available on the earth remains pollution free, it is sufficient to meet the drinking water needs of the existing population of the world, unfortunately a large portion of fresh water does not remain fit for use of the living world due to increasing

economic activities, urbanization etc.

Rational Use of Groundwater:

Groundwater meets 25 per cent of total supply of water in the world, remaining 75 per cent supply is met by surface water sources of rivers, lakes etc. Demand for groundwater goes on increasing in proportion to its available quantity due to which quantity of groundwater goes on decreasing. After exploitation of groundwater, its re-infiltration takes a very long time to complete. Hence, Groundwater exploitation should be only in proportion to its recharging capacity.

Increasing Forest Cover:

According to hydrological movements, water is received through rainfall every year different quantities on the surface of the earth. This water flows on the surface and reaches the seas. Some part of rainwater is stored in stable water reservoirs (lakes and tanks), whereas some quantity of water infiltrates into the land and takes the form of groundwater.

WATER USES AND MANAGEMENT

A total of 18000 L of water is pumped every day for the College dwellers as well to meet the daily demands of the academic and administrative Departments (Table 1). The daily use of the water during 2019-20 was approx. 2110 L per day shown in **Figure 2&3**.
Energy Audit 2019-20

Figure. 2: Daily water Consumption and usage in RBVRRR

Table: 1 Source and uses of water in the college campus Source of water

Source and uses of water in the College campus Source of water				
SI. No	Parameters	Information		
1	No of Wells	1		
2	No of the motors used	2		
3	Horsepower-motor	3 HP x 2		
4	Depth of well- Total	600 m x 1		
5	Capacity of Tank(Total)	250000 L		
Quantity	of water used in different section	ons of the Campus		
	Sections	Water use (L/day)		
6	Administrative block	600		
7	Canteen	2500		
8	Urinals and Toilets	9000		
9	Departments	500		
10	Gardens	1000		
11	Laboratories	1000		
12	Drinking	5000		
13	Leakage	500		
14	Main purposes of water use in the campus	Drinking and cooking purpose Toilets and wash areas Laboratory use Gardening Construction		
15	Nos. of water tap	320 nos		

KIWIS ECO LABORATORIES PVT LTD

Page 12

Energy	/ Audit	2019-20
--------	---------	---------

16	Water cooler and drinking water filtration facility	5 nos		
17	Nos. of urinal and toilets	20		
18	Nos. of waterless /bio-toilets	Nil		
19	Any water wastage/why?	Yes, leakage from pipes and tanks, leaving of taps open at times		
20	Water usage for gardening	1000 Ltr		
21	Wastewater sources	leakage from pipes and tanks, Overflowing of tanks from residential qtrs., Toilets, laboratories, hostels		
22	Use of wastewater	Nil		
23	The fate of wastewater from labs	Discharged into soak pit in case of contamination and natural discharge		
24	Any wastewater treatment for lab water	No		
25	Whether any green chemistry method practiced in Labs	No		
26	Rainwater harvesting	Rain water harvesting is maintain by the water body within the premises which also helps in maintaining the ground water level and there is no reusable rain water which		

The stake holders of the BVRRR specially propose to use of grey water which is obtained from the various domestic activities and they re-use the same water for gardening and vegetable fields etc. Also water recycling is done as per the direction of the competent authority in broader scale as and when required. During the rainy season water from the roof tops of the buildings directly fall into the lake through rain water outlets, RCC drains and recharges the ground water table throughout the year

These are of two types -

- **Recyclable**: waste having economic values but destined for disposal can be recovered and reused along with their energy value. e g. Plastic, paper, old cloth etc.
- Non-recyclable: waste which do not have economic value of recovery. e.g. Carbon paper, thermo coal, tetra packs etc.

Disposal of non-biodegradable waste is a major concern, not just plastic, a variety of waste being accumulated. There are a few ways to help non-biodegradable waste management. The impact of non biodegradable waste on the environment and also focus on its safe disposal for sustainable environment.

S. No.	Stake holders	Types of solid	pes of solid Average waste	
		waste	generated Year (Kg)	
1	ACADEMIC DEPARTMENT	Paper waste	1000	43.5
2		Plastic waste	25	1.1
3		Organic Waste	300	13.0
4		E-waste	1	0.0
5		Bio Medical Waste	25	1.1
6	ADMINISTRATIVE OFFICE	Paper waste	160	7.0
7		Plastic waste	25	1.1
8		Organic Waste	50	2.2
9		E-waste	2	0.1
10	CANTEENS	Paper waste	100	4.3
11		Plastic waste	10	0.4
12		Organic Waste	600	26.1
13		E-waste	2	0.1
TOTAL	•		2300Kg /	í ear

Table 2. Annual Waste Generation category wise

KIWIS ECO LABORATORIES PVT LTD

Page | 16

Energy Audit 2019-20

Figure.4 Annual Waste Generation In the RBVRR College of Pharmacy

Bio Medical waste:

Bio medical waste means any waste, which is generated during the diagnosis, treatment or immunization of human beings or animals or in research activities pertaining thereto or in the production or testing of biologicals, and including categories mentioned in Schedule I

Category of Waste as Table 3

Environmental Audit 2018-19

ENVIRONMENTAL AUDIT

KIWIS ECO LABORATORIES PVT LTD

Page 10

Environmental Audit 2018-19

Water Conservation, Harvesting and Management

Water is an important natural resource and is available naturally depending on the climate and topographic features. All organisms are dependent on water for their living. Although water is available in nature, portable water is not available freely for human consumption. There have been many practices to conserve water so that it can be readily available for human use. It has been noticed that due to unsustainable use of water resources there is contamination and depletion of the ground water and also water which is available in various reservoirs like lakes, ponds, streams etc which is becoming more alarming. Therefore it becomes increasingly important to conserve protect and manage the water resources availability and usage so that it is sustainably used within the college campus. Water auditing is conducted to evaluate the quality, availability and usage of water; the facilities available and methods adopted to revitalize and use it so that the resources are intact without leading to deterioration.

Rainwater harvest

Rainwater harvesting is a technique used for collecting, storing and using rainwater for domestic, agricultural or any other uses. The rainwater is collected from various hard surfaces such as rooftops, runoff from catchments, from streams and water conservation through watershed management or other manmade aboveground hard surfaces. It is an age-old system of collection of rainwater for future use. The harvested water can be stored on surface through ponds and tanks or can be recharged to groundwater.

Protection of Water from Pollution

If the total fresh water available on the earth remains pollution free, it is sufficient to meet the drinking water needs of the existing population of the world, unfortunately a large portion of fresh water does not remain fit for use of the living world due to increasing economic activities, urbanization etc.

Rational Use of Groundwater:

Groundwater meets 25 per cent of total supply of water in the world, remaining 75 per cent supply is met by surface water sources of rivers, lakes etc. Demand for groundwater

Environmental Audit 2018-19

goes on increasing in proportion to its available quantity due to which quantity of groundwater goes on decreasing. After exploitation of groundwater, its re-infiltration takes a very long time to complete. Hence, Groundwater exploitation should be only in proportion to its recharging capacity.

Increasing Forest Cover:

According to hydrological movements, water is received through rainfall every year different quantities on the surface of the earth. This water flows on the surface and reaches the seas. Some part of rainwater is stored in stable water reservoirs (lakes and tanks), whereas some quantity of water infiltrates into the land and takes the form of groundwater.

Water Uses and Management

A total of 20000 L of water is pumped every day for the College dwellers as well to meet the daily demands of the academic and administrative Departments (Table 1). The daily use of the water during 2018-19 was approx. 26500 L per day shown in Figure 2&3.

Figure. 2: Daily water Consumption and usage in RBVRRR

Table: 1 Source and uses of water in the college campus Source of water

RBVRR Wome	n's College	e of Pharma	су

Environmental Audit 2018-19

	Source and uses of water in the College campus Source of water				
SI. No	Parameters	Information			
1	No of Wells	1			
2	No of the motors used	2			
3	Horsepower-motor	3 HP x 2			
4	Depth of well- Total	600 m x 1			
5	Capacity of Tank(Total)	250000 L			
Quantity	y of water used in different section	ns of the Campus			
	Sections	Water use (L/day)			
6	Administrative block	1000			
7	Canteen	3500			
8	Urinals and Toilets	8000			
9	Departments	1500			
10	Gardens	1000			
11	Laboratories	5000			
12	Drinking	6000			
13	Leakage	500			
14	Main purposes of water use in	Drinking and cooking purpose Toilets and			
	the campus	wash areas Laboratory use Gardening			
		Construction			
15	Nos. of water tap	320 nos			
16	Water cooler and drinking	5 nos			
	water filtration facility				
17	Nos. of urinal and toilets	20			
18	Nos. of waterless /bio-toilets	Nil			
19	Any water wastage/why?	Yes, leakage from pipes and tanks, leaving of			
		taps open at times			
20	Water usage for gardening	1000 Ltr			
21	Wastewater sources	leakage from pipes and tanks. Overflowing			
10000		of tanks from residential gtrs., Toilets,			
		laboratories, hostels			
22	Use of wastewater	Nil			
23	The fate of wastewater from	Discharged into soak pit in case of			
	labs	contamination and natural discharge			
24	Any wastewater treatment for	No			
(lab water				
25	Whether any green chemistry	No			
	method practiced in Labs				
26	Rainwater harvesting	Rain water harvesting is maintain by the			
		water body within the premises which also			
		helps in maintaining the ground water level			
		and there is no reusable rain water which			

KIWIS ECO LABORATORIES PVT LTD

Page **| 13**

focus on its safe disposal for sustainable environment.

S. No. Stake holders		Types of solid	Average waste	% of waste
		waste	generated Year (Kg)	
1	ACADEMIC DEPARTMENT	Paper waste	1200	44.8
2		Plastic waste	25	0.9
3		Organic Waste	500	18.7
4		E-waste	1	0.0
5	ADMINISTRATIVE OFFICE	Paper waste	200	7.5
6		Plastic waste	15	0.6
7		Organic Waste	80	3.0
8		E-waste	2	0.1
9	CANTEENS	Paper waste	150	5.6
10		Plastic waste	5	0.2
11		Organic Waste	500	18.7
12		E-waste	2	0.1
TOTAL		1	2680 Kg /	Year

Table 2. Annual Waste Generation category wise

Figure.4 Annual Waste Generation In the RBVRR College of Pharmacy

Bio Medical waste:

Bio medical waste means any waste, which is generated during the diagnosis, treatment or immunization of human beings or animals or in research activities pertaining thereto or in the production or testing of biologicals, and including categories mentioned in Schedule I. Category of Waste as **Table 3. Bio Medical waste is not generated this academic year. In future, the medical lab has established.**

Environmental Audit 2018-19

Table :3 Bio Medical waste category wise				
Option	Waste Category	Treatment & Disposal		
Category No-1	Human Anatomical Waste (human tissues, organs, body parts)	incineration/deep burial		
Category No. 2 Animal Waste (animal tissues, organs, body parts, carcasses, bleeding parts, fluid, blood a experimental animals used in research, was generated by veterinary hospitals college discharge from hospitals animal houses)		incineration/deep burial		
Category No. 3	Microbiology & Biotechnology Waste (wastes from laboratory cultures, stocks or specimens of micro- organisms live or attenuated vaccines, human and animal cell culture used in research and infectious agents from research and industrial laboratories, wastes from production of biologicals, toxins, dishes and devices used for transfer of cultures)	local autoclaving/micro- waving/incineration		
Category No. 4	Waste sharps (needles, syringes, scalpels, blades, glass, etc. that may cause puncture and cuts. This includes both used and unused sharps)	disinfection (chemical treatment/autoclavin g/microwaving and mutilation/shredding		
Category No 5	Discarded Medicines and Cytotoxic drugs (wastes comprising of outdated, contaminated and discarded medicines)	incineration@/destructio n and drugs disposal in secured landfills		
Category No 6	Soiled Waste (Items contaminated with blood, and body fluids including cotton, dressings, soiled plaster casts, lines, beddings, other material contaminated with blood)	Incineration/ autoclaving/microwaving		
Category No. 7	Solid Waste (wastes generated from disposable items other than the waste sharps such as tubings, catheters, intravenous sets etc).	disinfection by chemical treatment/autoclaving/ microwaving and mutilation/ shredding		
Category No. 8	Liquid Waste (waste generated from laboratory and washing, cleaning, house- keeping and disinfecting activities).	disinfection by chemical treatment and discharge into drains		
Category No. 9	Incineration Ash (ash from incineration of any bio- medical waste)	disposal in municipal landfill		
Category No. 10	Chemical Waste (chemicals used in production of biologicals, chemicals used in disinfection, as insecticides, etc.)	Chemical discharge into drains for liquids and secured landfill for solids		

KIWIS ECO LABORATORIES PVT LTD

P a g e **| 18**

Carbon Footprint

Carbon Footprint is the amount of carbon dioxide released into the atmosphere as a result of the activities of a particular individual, optimization, or community. An acceptable definition for carbon foot print is: carbon footprints the total amount of greenhouse gases produced directly and indirectly for supporting human activities, usually expressed in equivalent tons of carbon dioxide (CO₂). The most common greenhouse gases (GHGs) in our environment are carbon dioxide, water vapour, methane nitrous oxide and ozone. The total carbon footprint college as calculated and represented as **Table.4** and International Standards of carbon footprint for various parameters represented as **Table.5**

SI. No:	Source	Rate	Quantity x	Days/year	Total Quantity	Annual Eqvt. CO2
1	Electricity use (For India)	0.82 kg/kWh	-		3030KWh	2.4 T CO ₂
2	Fossil fuel use	268 g CO2eq/kg	LPG	40	580 kg /Year	0.15 T CO2
3	Bus – students public transport	268 g CO2eq/L	580	250	3325 kg/year	971 T CO₂
4	Staff week public transport	268 g CO2eq/L	25	300	225 kg/Year	60.3 T CO ₂
5	Non Teaching staff public transport	268 g CO2eq/L	45	300	270 kg/Year	72.3 T CO₂
6	Cars, Taxis all	230g CO2eq/L	2	300	15 kg/Year	4 CO2
						1110.1T CO2

The RBVRR has total staff (Teaching + Non Teaching) of 70 members, the Co2 emission **Table:4 Carbon foot Print**

The per capita carbon footprint for the RBVRR, is 0.111 kg (or 0.111 T) of CO₂ equivalent 1110.1 T /1000 persons].

According to Economic Survey, Govt. of India 2009 - 10, the per capita emission for an Indian was 1.2 ton CO_2 eq. per annum. In the same report, it was projected that this will go up to 2.0 – 2.5 T of CO₂ by 2018-19 and to 3.0 – 3.5 T of CO₂ by 2030. For the year 2018-19, the RBVRR, the Carbon Footprint per capita at 0.111 T CO_2 is even less than one-Fourth of the national average. The campus is thus **a Green Campus**.

Table:5 International star	ndard values of Carbo	n foot Print for va	rious param	neters
	Pounds CO2 Per Unit of Volume	Kilograms CO2	Pounds CO2 Million	Kilogram: CO2
Carbon Dioxide (CO2) Factors:	or Mass	Volume or Mass	Btu	Million Bt
For homes and businesse	s			
Propane	12.70/gallon	5.76/gallon	139.05	63.07
Butane	14.80/gallon	6.71/gallon	143.20	64.95
Butane/Propane Mix	13.70/gallon	6.21/gallon	141.12	64.01
Home Heating and Diesel Fuel (Distillate)	22.40/gallon	10.16/gallon	161.30	73.16
	Pounds CO2	Kilograms CO2	Pounds CO2	Kilogram CO2
Carbon Dioxide (CO2) Factors:	Per Unit of Volume or Mass	Volume or Mass	Million Btu	Million B
Kerosene	21.50/gallon	9.75/gallon	159.40	72.30
Coal (All types)	4,631.50/short ton	2,100.82/short tor	210.20	95-35
Natural Gas	117.10/thousand cubic feet	53.12/thousand cubic feet	117.00	53.07
Jasoline	19.60/gallon	8.89/gallon	157.20	71.30
Residual Heating Fuel Businesses only)	26.00/gallon	11.79/gallon	173.70	78.79
Other transportation fuels				
et Fuel	21.10/gallon	9.57/gallon	156.30	70.90
Aviation Gas	18.40/gallon	8.35/gallon	152.60	69.20
ndustrial fuels and others r	not listed above			
lared natural gas	120.70/thousand cubic	54.75/thousand	120.60	54.70

KIWIS ECO LABORATORIES PVT LTD

P a g e **| 21**

Environmental Audit 2018-19

	Pounds CO2	Kilograms CO2	Pounds CO2	Kilograms CO2
Carbon Dioxide (CO2)	Per Unit of Volume or Mass	Volume or Mass	Million Btu	Million Btu
Special Naphthas (solvents)	20.05/gallon	9.10/gallon	160.50	72.80
Waxes	21.11/gallon	9.57/gallon	160.10	72.62
Coal by type				
Anthracite	5,685.00/short ton	2,578.68/short ton	228.60	103.70
Bituminous	4,931.30/short ton	2,236.80/short ton	205.70	93.30
Subbituminous	3,715.90/short ton	1,685.51/short ton	214.30	97.20
Lignite	2,791.60/short ton	1,266.25/short ton	215.40	97.70
Coke	6,239.68/short ton	2,830.27/short ton	251.60	114.12
Other fuels				
Geothermal (average all generation)	NA	NA	16.99	7.71
Municipal Solid Waste	5,771.00/short ton	2,617.68/short ton	91.90	41.69
Tire-derived fuel	6,160.00/short ton	2,794.13/short ton	189.54	85.97
Waste oil	924.0/barrel	419.12/barrel	210.00	95.25

Source: U.S. Energy Information Administration estimates. Note: To convert to carbon equivalents multiply by 12/44. Coefficients may vary slightly with estimation method and across time.

Summary

Goals of the College

In the effort to Enhancing an environmentally literate campus where students can learn the idea of protection of environment and stay healthy. The college Management is proactively working on the several facets of "Green Campus" including Plantation of more trees, Water Conservation, Efficient water usage by eliminating leaking water taps, Installation of STP, Water Harvesting Pits and interconnecting them to Recharge the Ground Water table. Effective Waste Management which includes Food Waste, Plastic, Paper, carbon footprints etc.

Energy Audit 2022-23

ENERGY AND RENEWABLE ENERGY AUDIT

KIWIS ECO LABORATORIES PVT LTD

Page 9

Energy and Renewable Energy :

India is on a path to rapid energy transition, started at a normal pace in 2008 as part of the then announced Climate Change Action Plan for India, with a target of installing 20,000 MW of renewable energy generation facilities including Solar and Wind electricity by 2022. Prime Minister Shri. Narendra Modi, after taking over reviewed this target and called upon the people of India to target 175,000 MW of renewable by 2022 – composed of 100,000 MW of Solar PV; 60,000 MW of Wind Power; 10,000 MW of Biomass based power and 5,000 MW of Small Hydro Power and all other renewable energy routes. At the historic 21st UNFCCC (UN Framework Convention on Climate Change) held in Paris in December 2015, India declared its INDC (Intended Nationally Determined Contribution) in which these targets are also explicitly stated. Therefore, it is only natural that through a Green Audit, any Higher Education Institution should identify opportunities for developing Renewable Energy (RE) Sources within its own premises.

The Institute has **20 KW** Solar PV Grid Connected in an area of **200 sft** and there is available area of **350 sft** for further addition of Solar PV plant.

The solar system has generated energy, the energy bills will drop. How much we save on bill will be dependent on the size of the solar system and electricity usage. Moreover, not only will you be saving on the electricity bill, there is also a possibility to receive payments for the surplus energy that you export back to the grid. If you generate more electricity than you use (considering that your solar panel system is connected to the grid). The annual energy consumption of the institute represented as **Table.1, 2 and Figure.3 &4**

TOD -> 2022-23	From Conventional	Solar	Total Amount Paid Rs.
March	5030	0	49710
April	4235	0	47715
May	3859	0	45523
June	4676	0	54557
July	2959	0	35663
August	4087	0	48156
September	3847	0	45309
October	2074	193	23829
November	2670	159	30602
December	3181	102	37052
January	2280	173	26211
February	2553	138	29578
Year Total	41451	765	473905
Minimum	2074 October 2022	0 Mar-Sep 2022	23829 October 2022
Maximum	4676 June 2022	193 October 2022	54557 June 2022

Table:1 Total Electrical Energy Consumption as per Utility Bills

KIWIS ECO LABORATORIES PVT LTD

Page | 11

Energy Audit 2022-23

	Annual Utilization				
Academic Year	Conventional Electricity	Solar Electricity Export to the Grid	Total Consumption	%Solar	
2018-19	30300	7710	22590	25.4	
2019-20	38914	6956	31958	21	
2020-21	3136	4341	3136	138	
2021-22	22249	5022	17227	22.5	
2022-23	41451	765	40686	0.1	
Average				52.8%	

Table 2: Annual Utilization of Electricity

For the consumption as in Table 1, the monthly charges are paid. The charge payable for peak time is Rs. 10.70 and the Normal time will be Rs8.90. Along with this 0.06% electricity duty is added up with the unit cost. Total for the year: Rs.473905. The 0.1% solar energy is supplied to against the to the grid and remaining is utilized as from conventional Energy for day to day activities.

Among all the benefits of solar energy the most important thing is that solar energy is a truly renewable energy source. It can be harnessed in all areas of the world and is available every day. We can not run out of solar energy as energy source.

Some of the key benefits of solar energy on the environment include:

- Using less water-Water is one of our most precious natural resources,
- Reducing air pollution-Help to slow climate change,
- Reducing your household's carbon footprint
- Reducing our dependence on fossil fuels.

The following housekeeping measures in Energy saving required for achieving the cited gains were introduced during year:

- Displayed stickers to switch off equipment like Computers, Printers, Photocopiers, etc. when not required also to isolate them from power supply, whenever possible.
- Maintenance schedules for switchboards and distribution boards prepared and followed.
- Log Books for recording energy consumption, extent of power failures and running of standby generators were introduced.

Summary

Goals of the College

In the effort to Enhancing an environmentally literate campus where students can learn the idea of protection of environment and stay healthy. The college Management is proactively working on the several facets of "Green Campus" including. Effective utilization of Renewable Energy to mitigate the fossil fuels, etc.

STATEMENT OF ASSURANCE

The Green Audit conducted for the **February 2023** in the college. The Management had taken initiative to carryout the part of Green Audit externally. As mentioned above it is in the process of improving the awareness towards the renewable energy and sustainable development .The conclusions are based on a comparison of the situations as they existed at the time of the audit. The evidences presented are in support of the conclusions.

Objective	Observation / Present status	Remarks / Recommendation
Renewable Energy – Harness Solar Power , Wind Power etc	A Grid Connected Solar plant is installed with capacity of 20 KW	The Solar PV plant is functional and exporting clean energy to the grid. It is recommended to explore the vacant areas to increase the solar roof top plants to harness more solar energy

Audit Framework and detailed findings of the Audit

Energy Audit 2021-22

ENERGY AND RENEWABLE ENERGY

KIWIS ECO LABORATORIES PVT LTD

Page 9

Energy and Renewable Energy :

India is on a path to rapid energy transition, started at a normal pace in 2008 as part of the then announced Climate Change Action Plan for India, with a target of installing 20,000 MW of renewable energy generation facilities including Solar and Wind electricity by 2022. Prime Minister Shri. Narendra Modi, after taking over reviewed this target and called upon the people of India to target 175,000 MW of renewable by 2022 – composed of 100,000 MW of Solar PV; 60,000 MW of Wind Power; 10,000 MW of Biomass based power and 5,000 MW of Small Hydro Power and all other renewable energy routes. At the historic 21st UNFCCC (UN Framework Convention on Climate Change) held in Paris in December 2015, India declared its INDC (Intended Nationally Determined Contribution) in which these targets are also explicitly stated. Therefore, it is only natural that through a Green Audit, any Higher Education Institution should identify opportunities for developing Renewable Energy (RE) Sources within its own premises.

The Institute has **20 KW** Solar PV Grid Connected in an area of **200 sft** and there is available area of **350 sft** for further addition of Solar PV plant.

The annual energy consumption of the institute represented as Table.1, 2 and Figure.3 &4

Energy Audit 2021-22

TOD -> 2021-22	From Conventional	Solar	Total Amount Paid Rs.
March			0
April	1386	912	20748
May	1263	1255	2787
June	1779	611	14003
July	1973	286	19301
August	2246	348	21410
September	1976	509	17084
October	1618	412	14500
November	2193	346	21007
December	2589	343	25098
January	1827	0	20598
February	3399	0	36724
Year Total	22249	5022	213260
Minimum	1263 May 2021	0 Jan - Mar 2022	23829 October 2022
Maximum	3399 February 2022	1255 May 2021	54557 June 2022

Table: 1 Total Electrical Energy Consumption as per Utility Bills

Annual Power Consumption

Figure. 3: Share of Solar PV in RBVRR Campus [With 20 kW SPV]

7710

6956

4341

5022

Energy Audit 2021-22

%Solar

25.4

21

138

22.5

51.7%

22590

31958

3136

17227

Annual Utilization Solar Academic Conventional Electricity Export Total Year Electricity to the Grid Consumption

30300

38914

22249

3136

BVRR Women's College of Pharmacy

2018-19

2019-20

2020-21

2021-22

Average

Table 2: Annual Utilization of Electricity

For the consumption as in Table 1, the monthly charges are paid. The charge payable for peak time is Rs. 10.70 and the Normal time will be Rs8.90. Along with this 0.06% electricity duty is added up with the unit cost. Total for the year: Rs.213260. The 0.05% solar energy is supplied to against the to the grid and remaining is utilized as from conventional Energy for day to day activities.

Among all the benefits of solar energy the most important thing is that solar energy is a truly renewable energy source. It can be harnessed in all areas of the world and is available every day. We can not run out of solar energy as energy source.

Some of the key benefits of solar energy on the environment include:

- Using less water-Water is one of our most precious natural resources,
- Reducing air pollution-Help to slow climate change,
- Reducing your household's carbon footprint
- Reducing our dependence on fossil fuels.

The following housekeeping measures in Energy saving required for achieving the cited gains were introduced during year:

- Displayed stickers to switch off equipment like Computers, Printers, Photocopiers, etc. when not required also to isolate them from power supply, whenever possible.
- Maintenance schedules for switchboards and distribution boards prepared and followed.
- Log Books for recording energy consumption, extent of power failures and running of standby generators were introduced.

Summary

Goals of the College

In the effort to Enhancing an environmentally literate campus where students can learn the idea of protection of environment and stay healthy. The college Management is proactively working on the several facets of "Green Campus" including renewable energy and utilization etc

STATEMENT OF ASSURANCE

The Green Audit conducted for the **February 2022** in the college. The Management had taken initiative to carryout the Green Audit externally. As mentioned above it is in the process of improving the awareness towards the renewable energy and sustainable development .The conclusions are based on a comparison of the situations as they existed at the time of the audit. The evidences presented are in support of the conclusions.

Objective	Observation/ Present status	Remarks / Recommendation
Renewable Energy – Harness Solar Power , Wind Power etc	A Grid Connected Solar plant is installed with capacity of 20 KW	The Solar PV plant is functional and exporting clean energy to the grid. It is recommended to explore the vacant areas to increase the solar roof top plants to harness more solar energy

Audit Framework and detailed findings of the Audit

Energy and Renewable Energy :

India is on a path to rapid energy transition, started at a normal pace in 2008 as part of the then announced Climate Change Action Plan for India, with a target of installing 20,000 MW of renewable energy generation facilities including Solar and Wind electricity by 2022. Prime Minister Shri. Narendra Modi, after taking over reviewed this target and called upon the people of India to target 175,000 MW of renewable by 2022 – composed of 100,000 MW of Solar PV; 60,000 MW of Wind Power; 10,000 MW of Biomass based power and 5,000 MW of Small Hydro Power and all other renewable energy routes. At the historic 21st UNFCCC (UN Framework Convention on Climate Change) held in Paris in December 2015, India declared its INDC (Intended Nationally Determined Contribution) in which these targets are also explicitly stated. Therefore, it is only natural that through a Green Audit, any Higher Education Institution should identify opportunities for developing Renewable Energy (RE) Sources within its own premises.

The Institute has **20 KW** Solar PV Grid Connected in an area of **200 sft** and there is available area of **350 sft** for further addition of Solar PV plant.

The solar system has generated energy, the energy bills will drop. How much we save on bill will be dependent on the size of the solar system and electricity usage. Moreover, not only will you be saving on the electricity bill, there is also a possibility to receive payments for the surplus energy that you export back to the grid. If you generate more electricity than you use (considering that your solar panel system is connected to the grid). The annual energy consumption of the institute represented as **Table.1, 2 and Figure.3 &4**

TOD -> 2020-21	From Conventional	Solar	Total Amount Paid Rs.
March			
April	125	215	27037
May	125	756	27037
June	0	459	0
July	0	152	0
August	0	365	0
September	0	458	0
October	0	543	0
November	0	421	0
December	377	125	0
January	611	352	0
February	1898	495	0
Year Total	3136	4341	54074
Maximum	1898 February 2021	756 May 2020	27037 February 2020

Table:1 Total Electrical Energy Consumption as per Utility Bills

KIWIS ECO LABORATORIES PVT LTD

Page 10

Academic Year	Annual Utilization				
	Conventional Electricity	Solar Enventional Electricity Export to the Grid		%Solar	
2018-19	30300	7710	22590	25.4	
2019-20	38914	6956	31958	21.7	
2020-21	3136	4341	3136	138	
Average				61.7	

Table 2: Annual Utilization of Electricity

For the consumption as in Table 1, the monthly charges are paid. The charge payable for peak time is Rs. 10.42 and the Normal time will be Rs8.80. Along with this 0.06% electricity duty is added up with the unit cost. Total for the year: Rs.54074. The 138% solar energy is supplied to against the to the grid and remaining is utilized as from conventional Energy. Among all the benefits of solar energy the most important thing is that solar energy is a truly renewable energy source. It can be harnessed in all areas of the world and is available every day. We can not run out of solar energy as energy source.

Some of the key benefits of solar energy on the environment include:

- Using less water-Water is one of our most precious natural resources,
- Reducing air pollution-Help to slow climate change,
- Reducing your household's carbon footprint
- Reducing our dependence on fossil fuels.

The following housekeeping measures in Energy saving required for achieving the cited gains were introduced during year:

- Displayed stickers to switch off equipment like Computers, Printers, Photocopiers, etc. when not required also to isolate them from power supply, whenever possible.
- Maintenance schedules for switchboards and distribution boards prepared and followed.
- Log Books for recording energy consumption, extent of power failures and running of standby generators were introduced.

Summary

Goals of the College

In the effort to Enhancing an environmentally literate campus where students can learn the idea of protection of environment and stay healthy. The college Management is proactively working on the several facets of "Green Campus" including renewable energy and utilization etc.

Energy Audit 2019-20

ENERGY AND RENEWABLE ENERGY

KIWIS ECO LABORATORIES PVT LTD

Page 9

Energy and Renewable Energy :

India is on a path to rapid energy transition, started at a normal pace in 2008 as part of the then announced Climate Change Action Plan for India, with a target of installing 20,000 MW of renewable energy generation facilities including Solar and Wind electricity by 2022. Prime Minister Shri. Narendra Modi, after taking over reviewed this target and called upon the people of India to target 175,000 MW of renewable by 2022 – composed of 100,000 MW of Solar PV; 60,000 MW of Wind Power; 10,000 MW of Biomass based power and 5,000 MW of Small Hydro Power and all other renewable energy routes. At the historic 21st UNFCCC (UN Framework Convention on Climate Change) held in Paris in December 2015, India declared its INDC (Intended Nationally Determined Contribution) in which these targets are also explicitly stated. Therefore, it is only natural that through a Green Audit, any Higher Education Institution should identify opportunities for developing Renewable Energy (RE) Sources within its own premises.

The Institute has **20 KW** Solar PV Grid Connected in an area of **200 sft** and there is available area of **350 sft** for further addition of Solar PV plant.

The solar system has generated energy, the energy bills will drop. How much we save on bill will be dependent on the size of the solar system and electricity usage. Moreover, not only will you be saving on the electricity bill, there is also a possibility to receive payments for the surplus energy that you export back to the grid. If you generate more electricity than you use (considering that your solar panel system is connected to the grid). The annual energy consumption of the institute represented as **Table.1, 2 and Figure.2&3**

Energy Audit 2019-20

RBVRR Women's College of Pharmacy

TOD -> 2019-20	From Conventional	Solar	Total Amount Paid Rs.	
March	5568	654	51709	
April	5048	897	39797	
May	2719	1215	18161	
June	3492	675	30691	
July	2806	285	27699	
August	2553	395	24101	
September	3646	346	35415	
October	2193	451	19954	
November	4100	658	39962	
December	3527	524	32518	
January	3262	856	26573	
February				
Year Total	38914	6956	346580	
Minimum				
Maximum	1898 February 2021	756 May 2020	27037 February 2020	

Table:1 Total Electrical Energy Consumption as per Utility Bills

Annual Power Consumption

Figure. 2 Share of Solar PV in RBVRR Campus [With 20 kW SPV]

Academic Year	Annual Utilization				
	Conventional Electricity	Solar Electricity Export to the Grid	Total Consumption	%Solar	
2018-19	30300	7710	22590	25.4	
2019-20	38914	6956	31958	21	
Average				23.2	

Table 2: Annual Utilization of Electricity

For the consumption as in Table 1, the monthly charges are paid. The charge payable for peak time is Rs. 9.70 and the Normal time will be Rs7.90. Along with this 0.06% electricity duty is added up with the unit cost. Total for the year: Rs.346580. The 21% solar energy is supplied to against the to the grid and remaining is utilized as from conventional Energy.

Among all the benefits of solar energy the most important thing is that solar energy is a truly renewable energy source. It can be harnessed in all areas of the world and is available every day. We can not run out of solar energy as energy source.

Some of the key benefits of solar energy on the environment include:

- Using less water-Water is one of our most precious natural resources,
- Reducing air pollution-Help to slow climate change,
- Reducing your household's carbon footprint
- Reducing our dependence on fossil fuels.

The following housekeeping measures in Energy saving required for achieving the cited gains were introduced during year:

- Displayed stickers to switch off equipment like Computers, Printers, Photocopiers, etc. when not required also to isolate them from power supply, whenever possible.
- Maintenance schedules for switchboards and distribution boards prepared and followed.

Energy Audit 2019-20

Present Status: Presently installed 20 KW Grid Connected Solar PV to Harness the Solar Power and further enhancement of solar PV is in the pipe line.

Summary

Goals of the College

In the effort to Enhancing an environmentally literate campus where students can learn the idea of protection of environment and stay healthy. The college Management is proactively working on the several facets of "Green Campus" including Plantation of more trees, Water Conservation, Efficient water usage by eliminating leaking water taps, Installation of STP, Water Harvesting Pits and interconnecting them to Recharge the Ground Water table. Effective Waste Management which includes Food Waste, Plastic, Paper, carbon footprints etc.
RBVRR Women's College of Pharmacy

Energy Audit 2018-19

ENERGY AND RENEWABLE ENERGY

KIWIS ECO LABORATORIES PVT LTD

Page 9

Energy and Renewable Energy :

The Institute has **20 KW** Solar PV Grid Connected in an area of **200 sft** and there is available area of **350 sft** for further addition of Solar PV plant.

The solar system has generated energy, the energy bills will drop. How much we save on bill will be dependent on the size of the solar system and electricity usage. Moreover, not only will you be saving on the electricity bill, there is also a possibility to receive payments for the surplus energy that you export back to the grid. If you generate more electricity than you use (considering that your solar panel system is connected to the grid). The annual energy consumption of the institute represented as **Table.1, 2 and Figure.2 &3**

TOD -> 2018-19	From Conventional	Solar	Total Amount Paid Rs.	
March	5568	654	51709	
April	5048	897	39797	
May	2719	1215	18161	
June	3492	675	30691	
July	2806	285	27699	
August	2553	395	24101	
September	3646	346	35415	
October	2193	451	19954	
November	4100	658	39962	
December	3527	524	32518	
January	3262	856	26573	
February	-	-	-	
Year Total	30300	7710	251267	
Minimum	2193 October 2018	285 July 2018	18161 May 2018	
Maximum	5568 March 2018	1215 May 2018	51709 March 2018	

Table:1 Total	Electrical	Energy	Consumption	as per	Utility Bills
---------------	------------	--------	-------------	--------	----------------------

Figure.2: Share of Solar PV in RBVRR Campus [With 20 kW SPV]

Table 2: Annual Utilization of Electricity

A State		Annual Utilization				
Academic Year	Conventional Electricity	Solar Electricity Export to the Grid	Total Consumption	%Solar		
2018-19	30300	7710	22590	25.4		
Average						

For the consumption as in Table 1, the monthly charges are paid. The charge payable for peak time is Rs. 9.70 and the Normal time will be Rs7.90. Along with this 0.06% electricity duty is added up with the unit cost. Total for the year: **Rs.251267**. The excess of 25.4% solar energy is exported to grid and also utilized as from conventional Energy for the regular activities.

RBVRR Women's College of Pharmacy

Energy Audit 2018-19

Among all the benefits of solar energy the most important thing is that solar energy is a truly renewable energy source. It can be harnessed in all areas of the world and is available every day. We can not run out of solar energy as energy source.

Some of the key benefits of solar energy on the environment include:

- Using less water-Water is one of our most precious natural resources,
- Reducing air pollution-Help to slow climate change,
- Reducing your household's carbon footprint
- Reducing our dependence on fossil fuels.

The following housekeeping measures in Energy saving required for achieving the cited gains were introduced during year:

- Displayed stickers to switch off equipment like Computers, Printers, Photocopiers, etc. when not required also to isolate them from power supply, whenever possible.
- Maintenance schedules for switchboards and distribution boards prepared and followed.
- Log Books for recording energy consumption, extent of power failures and running of standby generators were introduced.

RBVRR Women's College of Pharmacy

Summary

Goals of the College

In the effort to Enhancing an environmentally literate campus where students can learn the idea of protection of environment and stay healthy. The college Management is proactively working on the several facets of "Green Campus" including renewable energy and utilization etc.

KIWIS ECO LABORATORIES PVT LTD